Modèles de durée - Approche paramétrique

Exercice 1.

Déterminez : (i) la durée de vie moyenne et (ii) la durée de vie médiane sous un modèle Gompertz(1,2).

Exercice 2.

Une durée de vie T est distribuée selon $Weibull(\lambda, \gamma)$ et $T \circ x$ désigne la durée de vie résiduelle après l'âge x. Montrez que :

- (i) si $\gamma < 1$, alors $T \circ x$ croît au sens stochastique lorsque x croît.
- (ii) si $\gamma > 1$, alors $T \circ x$ décroît au sens stochastique lorsque x croît.
- (iii) la loi exponentielle est sans mémoire, en considérant le cas $\gamma = 1$.

Exercice 3.

T est une durée de vie continue ; ξ_p désigne le quantile d'ordre p (0 < p < 1) de sa loi de probabilité et $\Lambda(t)$ sa fonction de hasard cumulé.

- 1. Montrez que : $\Lambda(\xi_p) = -\ln(1-p)$.
- 2. Déduisez-en une expression de ξ_p lorsque T est distribuée selon : (i) une loi exponentielle, (ii) une loi de Weibull.

Exercice 4.

On estime que les sujets nés en 2018 vivront en moyenne quatre-vingts ans. Avec quelle probabilité dix d'entre eux vivront jusqu'à trente ans au moins, en supposant leurs durées de vie distribuées selon la même loi exponentielle ?

Exercice 5.

La durée d'attente du tramway est distribuée selon une loi exponentielle de paramètre λ . Hier, parmi cinquante usagers, un seul dit avoir attendu deux minutes exactement, et les autres plus de deux minutes. Déterminez la valeur de λ .

Exercice 6.

L'an passé, dans la commune d'Ars, dix sujets sont morts à l'âge de 50, 53, 61, 15, 90, 66, 72, 96, 82, 78 ans ; on suppose que la durée de vie d'un Arsais est distribuée selon une loi exponentielle de paramètre λ .

- 1. Quelle estimation de λ obtient-on par Maximum de Vraisemblance?
- 2. Quelle est la durée de vie moyenne dans la région ?
- 3. Avec quelle probabilité un Arsais vit-il au moins vingt ans ? au moins soixante ans ?
- 4. Avec quelle probabilité un Arsais de soixante ans vit-il au delà de quatre vingts ans ?
- 5. Quelle est l'espérance de vie résiduelle d'un Arsais de quarante ans ?
- 6. Déterminez la valeur de BIC du modèle estimé.
- 7. Doit-on rejeter au seuil de 5% l'hypothèse : $\lambda = 0.02$? Quelle est la p-valeur du test ?
- 8. Donnez un intervalle de confiance à 95% du paramètre du modèle.

Exercice 7.

Reprenez l'exercice 6, questions 1 à 6, en supposant la durée de vie des Arsais distribuée selon une loi de Weibull; on pourra estimer le paramètre de cette loi par Maximum de Vraisemblance, en utilisant la fonction fitdistr{MASS} de R.

Exercice 8.

Reprenez l'exercice 6, questions 1 à 6, en supposant que la durée de vie des Arsais est distribuée selon une loi de Gamma ; on pourra estimer le paramètre de cette loi par Maximum de Vraisemblance, en utilisant la fonction mledist{fitdistrplus} de R.

Exercice 9.

Avec quelle probabilité un sujet de cinquante ans disparaitra-t-il entre soixante et soixante-dix ans si sa durée de vie est distribuée selon Weibull(1/2500, 2)? Quelle est la durée de vie résiduelle attendue?

Exercice 10.

Pour cinquante durées de vie t_1, \ldots, t_{50} on observe : $\sum_{i=1}^{50} t_i = 13500$ et $\sum_{i=1}^{50} t_i^2 = 4, 5 \times 10^6$; on suppose ces observations issues d'une loi de Weibull de paramètres : $\lambda > 0$ et $\gamma = 2$.

A. Lourme, Faculté d'économie, gestion & AES, Université de Bordeaux http://alexandrelourme.free.fr

1. Estimez λ et déterminez un intervalle de confiance à 95% de λ .

Les observations t_1, \ldots, t_{50} sont les durées de vie de contrats Coverage. Or, ce contrat résilié après une durée T rapporte \sqrt{T} .

- 2. Quelle est la valeur actuelle attendue du contrat :
 - (i) si le taux actuariel est 1
 - (ii) si le taux actuariel est $\exp(-T)$?

Exercice 11.

La durée de vie d'un homme T_h est distribuée selon $\mathscr{E}(\eta)$; la durée de vie de son épouse T_f a pour fonction de hasard : $\lambda_{T_f}(t) = 2t/\theta^2$; $\theta > 0$. T_h et T_f sont indépendantes et $T = \min\{T_h, T_f\}$.

- 1. Montrez que T_f est distribuée selon une loi de Weibull.
- 2. Déterminez la fonction de hasard de T, sa densité et sa fonction de survie.
- 3. Exprimez en fonction de η et θ la probabilité que le mari survive à son épouse.

Exercice 12.

Une durée de vie est distribuée selon $\gamma(2, 56; 0, 032)$. Représentez la fonction de hasard cumulé et déterminez la proportion de sujets de quarante ans qui ne vivront pas dix ans de plus.

Exercice 13.

Montrez que la fonction de hasard de $\gamma(k;\eta)$ croit lorsque k>1 et décroit lorsque 0< k<1. Si une durée de vie est distribuée selon $\gamma(0,5;\eta)$, la probabilité de vivre encore deux ans est-elle plus grande à 20 ans ou à 30 ans ?

Exercice 14.

Un population comporte 40% de femmes dont la durée de vie est distribuée selon $\mathcal{E}(1/80)$ et 60% d'hommes dont la durée de vie est distribuée selon Weibull(1/80; 1, 2).

- 1. Déterminez l'espérance de vie d'un nouveau né, puis l'espérance de vie résiduelle d'un sujet de 50 ans.
- 2. Avec quelle probabilité un sujet de 50 ans disparaitra-t-il entre 60 et 70 ans ?

Exercice 15.

Une population de tortues comporte 40% de mâles et 60% de femelles ; la durée de vie des femelles est distribuée selon $\mathcal{E}(1/100)$ et celle des mâles selon $\mathcal{E}(1/80)$. T désigne la durée de vie d'une tortue choisie au hasard.

- 1. Déterminez : (i) l'espérance de vie (ii) la tranche d'âge du dernier décile (iii) la durée de vie médiane pour : (a) l'ensemble de la population (b) les tortues de quarante ans au moins.
- 2. Montrez que la durée de vie résiduelle moyenne augmente avec l'âge.