Chapitre 3 – Lois de probabilité usuelles – Travaux Dirigés

Exercice 1. (loi uniforme)

- 1. On lance un dé équilibré dont les faces sont numérotées de 1 à 6. X est le numéro de la face apparente.
 - (a) Quelle est la loi de X?
 - (b) Que valent son espérance et sa variance?
 - (c) Avec quelle probabilité X vaut-elle au plus 2?
- 2. Reprendre la question 1. en supposant les faces du dé numérotées de 0 à 5.

Exercice 2. (loi binomiale)

15% des employés d'une ESN sont experts Python. On note X le nombre d'experts parmi dix employés choisis au hasard.

- 1. Quelle est la loi de X?
- 2. Que valent son espérance et sa variance ?
- 3. Avec quelle probabilité y a-t-il parmi les dix employés choisis au hasard : (a) deux (b) de deux à quatre (c) au moins quatre experts Python ?

Exercice 3. (loi de Poisson)

Le nombre quotidien d'appels publicitaires que reçoit John est distribué selon une loi de Poisson de paramètre 2.

- 1. Combien d'appels John reçoit-il chaque jour, en moyenne ? Avec quelle variance ?
- 2. Avec quelle probabilité recevra-t-il demain : (a) trois appels exactement ? (b) de trois à quatre appels ? (b) au moins trois appels ?
- 3. Avec quelle probabilité recevra-t-il un appel au moins cet après midi sachant qu'il a déjà reçu un appel ce matin?

Exercice 4. (loi géométrique)

Une requête sur un serveur échoue dans 70% des cas.

- 1. Combien de tentatives faut-il en moyenne pour faire aboutir la requête?
- 2. Avec quelle probabilité la requête aboutit-elle à la troisième tentative ?
- 3. Avec quelle probabilité faut-il au moins trois tentatives pour réussir?

En réalité, une requête échoue dans 70% des cas avant 20 heures et dans 40% des cas après 20 heures.

4. Avec quelle probabilité la requête aboutit-elle à la troisième tentative^a?

Exercice 5. (mélange de lois discrètes)

30% des articles du Progrès sont rédigés par Bob ; les autres sont rédigés par Sam. Le nombre de fautes dans un article est distribué selon $\mathscr{P}(10)$ s'il est rédigé par Bob ; selon $\mathscr{P}(8)$ s'il est rédigé par Sam.

- 1. Avec quelle probabilité un article rédigé par Sam comporte-t-il sept fautes ?
- 2. Avec quelle probabilité un article comporte-t-il sept fautes?
- 3. Avec quelle probabilité un article comptant sept fautes a-t-il été rédigé par Sam ?

Exercice 6. (loi uniforme continue)

Le temps d'attente (en minutes) de la hotline MoldyPhone est distribué selon une loi uniforme entre 0 et 5.

- 1. Quel est la durée d'attente moyenne ? Et la variance du temps d'attente ?
- 2. Avec quelle probabilité attend-on : (a) au plus deux minutes ? (b) de deux à trois minutes ?
- 3. Déterminer et interpréter le quantile d'ordre 0,8 du temps d'attente.

A. Lourme, Faculté d'économie, gestion & AES, Université de Bordeaux

^ales tentatives ont lieu toutes avant 20 heures ou toutes après 20 heures

Exercice 7. (loi exponentielle)

La durée de vie (en années) d'un composant électronique est distribuée selon une loi exponentielle de paramètre : 0, 1.

- 1. Quelle est la durée de vie moyenne d'un composant ? Et la variance des durées de vie ?
- 2. Avec quelle probabilité un composant dure-t-il : (a) dix ans au plus (b) entre dix et onze ans ?
- 3. Déterminer et interpréter le quantile d'ordre 0,6 de la durée de vie d'un composant.

Exercice 8. (loi normale)

- 1. Déterminer :
 - (a) $\mathbb{P}(\mathcal{N}(4;3) \leq 5)$ (b) $\mathbb{P}(\mathcal{N}(5;4) \geq 9)$ (c) $\mathbb{P}(\mathcal{N}(3;1) \leq 2)$ (d) $\mathbb{P}(\mathcal{N}(3;3) \geq 0)$ (e) $\mathbb{P}(3 \leq \mathcal{N}(4;3) \leq 5)$.
- 2. Déterminer le quantile :
 - (a) d'ordre 0,8 de $\mathcal{N}(0;1)$ (b) d'ordre 0,6 de $\mathcal{N}(2;3)$ (c) d'ordre 0,4 de $\mathcal{N}(7;4)$ (d) d'ordre 0,2 de $\mathcal{N}(10;5)$.

Le salaire en $k \in d$ 'un homme est distribué selon une loi normale de moyenne 2 et de variance 1, 5 ; celui d'une femme, selon une loi normale de moyenne 1, 8 et de variance 1.

3. Avec quelle probabilité le revenu d'un couple (homme-femme) est-il compris entre 3,3 et 4,3 k€?

Un gouvernement décide d'augmenter tous les salaires de 20% et d'offrir une prime mensuelle de 1000 €.

4. Avec quelle probabilité le salaire d'un homme est-il inférieur à 4 k€?

Exercice 9. (loi de χ^2)

X est une variable aléatoire distribuée selon χ_5^2 .

- 1. Tracer sous R la courbe de la densité de X puis la courbe de la fonction de répartition de X.
- 2. Avec quelle probabilité X est-elle inférieure ou égale à 2,4 ?
- 3. A quelle valeur X est-elle inférieure ou égale dans 80% des cas ?
- 4. Simuler un échantillon de 100 réalisations de X

 Z_1, \ldots, Z_5 sont cinq variables aléatoires normales centrées réduites indépendantes et $Y = \sum_{i=1}^5 Z_i^2$.

- 5. Simuler sous R mille réalisations de Y.
- 6. Comparer l'histogramme de la série obtenue avec la fonction de densité de X.

Exercice 10. (loi de Student)

X est une variable aléatoire distribuée selon \mathcal{T}_5 .

- 1. Tracer sous R la courbe de la densité de X puis la courbe de la fonction de répartition de X.
- 2. Déterminer la probabilité α que X soit inférieure ou égale à 1, 2.
- 3. A quelle valeur X est-elle inférieure ou égale dans 90% des cas ?
- 4. Simuler un échantillon de 100 réalisations de X.

Y est une variable aléatoire distribuée selon χ^2_5 ; Z est une variable aléatoire normale centrée réduite indépendante de Y et $T=Z/\sqrt{Y/5}$.

- 5. Simuler sous R mille réalisations de T.
- 6. Comparer l'histogramme de la série obtenue avec la fonction de densité de X.