Chapitre 3 – Fonctions : Dérivation – TD Feuille 1

Exercice 1. (continuité, dérivabilité)

1. Chaque fonction de Fig. 1a, Fig. 1b, Fig. 1c, Fig. 1d est-elle : définie en 1 ? continue en 1 ? dérivable en 1 ?

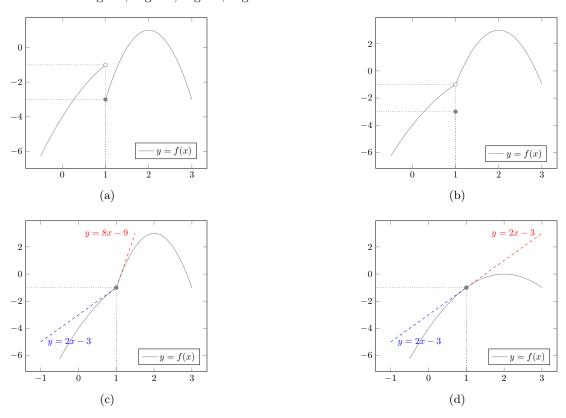


Fig. 1

• Fig. 1a.

f est définie en 1 et sa valeur en 1 est -3. La limite de f en 1 à gauche existe et vaut -1; la limite de f en 1 à droite existe et vaut -3. La limite de f en 1 à gauche et la limite de f en 1 à droite ne coïncident pas ; donc f ne possède pas de limite en 1. Comme la valeur de f en 1 ne coïncide pas avec la limite de f en 1, f n'est pas continue en 1. Puisque f n'est pas continue en 1, elle n'est pas non plus dérivable en 1.

• Fig. 1b.

f est définie en 1 et sa valeur en 1 est -3. La limite de f en 1 à gauche existe et vaut -1; la limite de f en 1 à droite existe et vaut aussi -1. Comme les limites de f en 1 à gauche et à droite existent et coïncident, f admet une limite en 1; cette limite vaut -1. La valeur de f en 1 n'est pas égale à sa limite en 1. Donc f n'est pas continue en 1; elle n'est donc pas non plus dérivable en 1.

o Fig. 1c.

f est définie en 1 et sa valeur en 1 est -1. La limite de f en 1 à gauche existe et vaut -1; la limite de f en 1 à droite existe et vaut aussi -1. Comme les limites de f en 1 à gauche et à droite existent et coïncident, f admet une limite en 1; cette limite vaut -1. La valeur de f en 1 est égale à sa limite en 1. Donc f est continue en 1. La limite du taux d'accroissement de f entre 1 et 1+h vaut 2 quand h tend vers 0^- et 8 quand h tend vers 0^+ . Le taux d'accroissement de f entre 1 et 1+h n'a pas de limite quand h tend vers 0: f n'est donc pas dérivable en 1.

o Fig. 1d.

f est définie en 1 et sa valeur en 1 est -1. La limite de f en 1 à gauche existe et vaut -1; la limite de f en 1 à droite existe et vaut aussi -1. Comme les limites de f en 1 à gauche et à droite existent et coïncident, f admet une limite en 1; cette limite vaut -1. La valeur de f en 1 est égale à sa limite en 1. Donc f est continue en 1. La limite du taux d'accroissement de f entre 1 et 1+h vaut 2 quand h tend vers 0^- et 2 quand h tend vers 0^+ . Le taux d'accroissement de f entre 1 et 1+h tend vers 2 quand h tend vers 0: f est dérivable en 1 et f'(1)=2.

2. La fonction définie par $g(x) = (0, 5x - 2) \times \mathbb{1}_{]2;+\infty[}(x) - 0, 5x \times \mathbb{1}_{]-\infty;2]}(x)$ est-elle continue? dérivable? q peut être définie par :

$$g(x) = \begin{cases} -0.5x & \text{si } x \le 2\\ 0.5x - 2 & \text{si } x > 2 \end{cases}$$

Fig. 2 représentant g indique : g est continue sur \mathbb{R} , dérivable sur $\mathbb{R}\setminus\{2\}$ et non dérivable en 2.

- $\circ \ \textit{Continuit\'e en 2.} \ \lim_{x\to 2^-} g(x) = \lim_{x\to 2^-} -0, \\ 5x = -1 \ ; \ \lim_{x\to 2^+} g(x) = \lim_{x\to 2^+} (0, 5x-2) = -1. \ \text{Les limites de g à gauche et à droite de 2 existent et coı̈ncident } ; \\ \text{donc, la limite de g en 2 existe et vaut } -1. \ \text{La valeur de g en 2 est : } g(2) = -0, \\ 5\times 2 = -1.$ Ainsi, la limite de q en 2 coïncide avec sa valeur en 2 ; donc, q est continue en 2.
- o Dérivabilité en 2. Le taux d'accroissement de g entre 2 et 2+h est :

$$\tau_{2;2+h}(g) = (g(2+h) - g(2))/h = \begin{cases} (-0, 5(2+h) - (-1))/h = -0, 5 \text{ si } h \le 0\\ (0, 5(2+h) - 2 - (-1))/h = 0, 5 \text{ si } h > 0 \end{cases}$$

$$\lim_{h \to 0^{-}} \tau_{2:2+h}(g) = -0.5 \neq \lim_{h \to 0^{+}} \tau_{2:2+h}(g) = 0.5.$$

Les limites de $\tau_{2;2+h}(g)$ à gauche et à droite de 0 ne coïncident pas ; le taux d'accroissement de g entre 2 et 2+h n'a pas de limite et g n'est pas dérivable en 2.

 \circ Régularité (continuité & dérivabilité) sur $\mathbb{R}\setminus\{2\}$.

Sur $]-\infty;2[:g$ coïncide avec une fonction continue et dérivable: $x\mapsto -0,5x$; g est donc continue et dérivable.

Sur $[2; +\infty[: g \text{ coïncide avec une fonction continue et dérivable}: x \mapsto 0, 5x - 2; g \text{ est donc continue et dérivable.}$

Ainsi, g est continue et dérivable en tout point de $]-\infty; 2[\cup]2; +\infty[$.

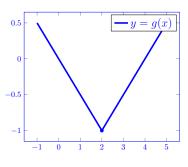


Fig. 2

Exercice 2. (limite d'un taux d'accroissement, nombre dérivé)

Déterminez et interprétez les limites suivantes.

a)
$$\lim_{h\to 0} (1/(1+h)-1)/h$$

b)
$$\lim_{h\to 0} (\sqrt{1+h}-1)/h$$

c)
$$\lim_{h\to 0} (e^h - 1)/h$$

a)
$$\lim_{h \to 0} (1/(1+h) - 1)/h$$
 b) $\lim_{h \to 0} (\sqrt{1+h} - 1)/h$ c) $\lim_{h \to 0} (e^h - 1)/h$ d) $\lim_{h \to 0} (e^{x+h} - e^x)/h$

a)
$$\frac{\frac{1}{1+h}-1}{h} = \frac{\frac{1-(1+h)}{1+h}}{h} = \frac{-h}{h(1+h)} = \frac{-1}{1+h}$$
 et $\lim_{h\to 0} (1/(1+h)-1)/h = \lim_{h\to 0} -1/(1+h) = -1$.

(1/(1+h)-1)/h est le taux d'accroissement de $x\mapsto 1/(1+x)$ entre 0 et h. Ainsi, $x\mapsto 1/(1+x)$ est dérivable en 0 et son nombre dérivé est : -1.

b) $\lim (\sqrt{1+h}-1)/h$ est une forme indéterminée (numérateur et dénominateur tendent vers 0). L'indétermination est levée en multipliant numérateur et dénominateur par l'expression conjuguée du numérateur :

$$\frac{\sqrt{1+h}-1}{h} = \frac{(\sqrt{1+h}-1)(\sqrt{1+h}+1)}{h(\sqrt{1+h}+1)} = \frac{\sqrt{1+h}^2-1^2}{h(\sqrt{1+h}+1)} = \frac{1+h-1}{h(\sqrt{1+h}+1)} = \frac{1}{h(\sqrt{1+h}+1)} = \frac{1}{\sqrt{1+h}+1}.$$

$$\lim_{h\to 0} (\sqrt{1+h}+1) = 2 \text{ ; ainsi, } \lim_{h\to 0} \frac{\sqrt{1+h}-1}{h} = \lim_{h\to 0} \frac{1}{\sqrt{1+h}+1} = 1/2.$$

$$\lim_{h\to 0} (\sqrt{1+h}+1) = 2$$
; ainsi, $\lim_{h\to 0} \frac{\sqrt{1+h}-1}{h} = \lim_{h\to 0} \frac{1}{\sqrt{1+h}+1} = 1/2$.

 $(\sqrt{1+h}-1)/h$ est le taux d'accroissement de $x\mapsto\sqrt{1+x}$ entre 0 et h; ainsi, on a montré que $x\mapsto\sqrt{1+x}$ est dérivable en 0 et que son nombre dérivé est 1/2.

c) $(e^h-1)/h$ est le taux d'accroissement de $x\mapsto e^x$ entre 0 et h. Or, $x\mapsto e^x$ est dérivable en 0 et son nombre dérivé est 1. Donc : $\lim_{h\to 0}(e^h-1)/h=1$.

d)
$$(e^{x+h}-e^x)/h = (e^x \times e^h - e^x)/h = e^x(e^h - 1)/h$$
. Or, $\lim_{h\to 0}(e^h - 1)/h = 1$. Donc: $\lim_{h\to 0}(e^{x+h} - e^x)/h = \lim_{h\to 0}e^x(e^h - 1)/h = e^x$.

 $(e^{x+h}-e^x)/h$ est le taux d'accroissement de $x\mapsto e^x$ entre x et x+h; ainsi, on a montré que $x\mapsto e^x$ est dérivable en tout réel x et que son nombre dérivé en x est e^x .

Exercice 3. (dérivées de référence, dérivées et opérations)

Déterminez la dérivée de chacune des fonctions suivantes puis vérifiez vos résultats sous Maxima^a.

```
1. (a) x \mapsto 3\sqrt{x} (b) x \mapsto 5x^2 (c) x \mapsto 2/x (d) x \mapsto e^{2x} (e) x \mapsto \ln(3x) (f) x \mapsto 4^x
    (a) (3\sqrt{x})' = 3 \times (\sqrt{x})' = 3 \times 1/(2\sqrt{x}) = 1, 5/\sqrt{x}
    (b) (5x^2)' = 5 \times (x^2)' = 5 \times 2x = 10x
    (c) (2/x)' = 2 \times (1/x)' = 2 \times (-1/x^2) = -2/x^2
    (d) (e^{2x})' = (2x)'e^{2x} = 2e^{2x}
    (e) (\ln(3x))' = (3x)'/(3x) = 3/(3x) = 1/x
    (f) (4^x)' = (e^{x \ln 4})' = \ln 4 \times e^{x \ln 4} = 2 \ln 2 \times 4^x
2. (a) x \mapsto \sqrt{x} + 5/x (b) x \mapsto 2x + 5 + e^{-x} (c) x \mapsto \ln(2x) - 4^x (d) x \mapsto 1 + x - \sqrt{x} (e) x \mapsto \sum_{i=1}^5 e^{ix}
     (a) (\sqrt{x} + 5/x)' = (\sqrt{x})' + (5/x)' = 1/(2\sqrt{x}) + 5 \times (-1/x^2) = 0, 5/\sqrt{x} - 5/x^2
     (b) (2x+5+e^{-x})' = (2x+5)' + (e^{-x})' = 2 - e^{-x}
    (c) (\ln(2x) - 4^x)' = (\ln(2x))' - (4^x)' = 1/x - 2\ln 2 \times 4^x
    (d) (1+x-\sqrt{x})' = (1+x)' - (\sqrt{x})' = 1-0.5/\sqrt{x}
    (e) (\sum_{i=1}^{5} e^{ix})' = \sum_{i=1}^{5} (e^{ix})' = \sum_{i=1}^{5} i \times e^{ix}
3. (a) x \mapsto 2x\sqrt{x} (b) x \mapsto (2x+1)e^{-x} (c) x \mapsto 2^x \ln(x) (d) x \mapsto e^{-x} \ln(1/x) (e) x \mapsto 3^x e^{2x}
     (a) (2x\sqrt{x})' = (2x)'\sqrt{x} + (2x)(\sqrt{x})' = 2\sqrt{x} + 2x/(2\sqrt{x}) = 2x/\sqrt{x} + x/\sqrt{x} = 2\sqrt{x} + \sqrt{x} = 3\sqrt{x}
     (b) ((2x+1)e^{-x})' = (2x+1)'e^{-x} + (2x+1)(e^{-x})' = 2e^{-x} + (2x+1) \times (-1) \times e^{-x} = e^{-x}(2-(2x+1)) = e^{-x} \times (1-2x)
    Sous Maxima:
     (%i1) factor(diff((2*x+1)*exp(-x),x));
                                                              - (2 x - 1) %e
     (c) (2^x \ln(x))' = (2^x)' \ln x + (2^x)(\ln x)' = \ln 2 \times 2^x \times \ln x + 2^x \times (1/x) = 2^x(\ln 2 \times \ln x + 1/x)
    Sous Maxima:
     (%i2) factor(diff(2^x \times \log(x), x));
     (%02)
     (d) (e^x \ln(1/x))' = (-e^x \ln x)' = -(e^x)' \ln x - e^x (\ln x)' = -e^x \ln x - e^x/x = -e^x (\ln x + 1/x)
    Sous Maxima:
     (%i3) factor(diff(exp(x) \starlog(1/x),x));
                                                             %e (1 + x log(x))
     (%03)
     (e) (3^x e^{2x})' = (3^x)' e^{2x} + 3^x (e^{2x})' = \ln 3 \times 3^x e^{2x} + 3^x \times 2e^{2x} = 3^x e^{2x} (2 + \ln 3)
4. (a) x \mapsto (1+\sqrt{x})/(2x) (b) x \mapsto e^{2x}/(x+1) (c) x \mapsto (x^2+x+1)/(2x+1) (d) x \mapsto e^x/\ln(x) (e) x \mapsto (x+e^{2x})/\sqrt{x}
    (a) \left(\frac{1+\sqrt{x}}{2x}\right)' = \frac{(1+\sqrt{x})'\times(2x)-(1+\sqrt{x})\times(2x)'}{(2x)^2} = \frac{(1/(2\sqrt{x}))\times 2x-2(1+\sqrt{x})}{4x^2} = \frac{\sqrt{x}-2-2\sqrt{x}}{4x^2} = -(\sqrt{x}+2)/(4x^2)
    (b) \left(\frac{e^{2x}}{x+1}\right)' = \frac{(e^{2x})'(x+1) - e^{2x}(x+1)'}{(x+1)^2} = \frac{2e^{2x}(x+1) - e^{2x}}{(x+1)^2} = e^{2x}(2x+1)/(x+1)^2
    (c) \left(\frac{x^2+x+1}{2x+1}\right)' = \frac{(x^2+x+1)'(2x+1)-(x^2+x+1)(2x+1)'}{(2x+1)^2} = \frac{(2x+1)(2x+1)-(x^2+x+1)\times 2}{(2x+1)^2} = \frac{2x^2+2x-1}{(2x+1)^2}
    (d) \left(\frac{e^x}{\ln x}\right)' = \frac{(e^x)'(\ln x) - (e^x)(\ln x)'}{(\ln x)^2} = \frac{e^x \ln x - e^x/x}{(\ln x)^2} = e^x (\ln x - 1/x)/(\ln x)^2
    (e) \left(\frac{x+e^{2x}}{\sqrt{x}}\right)' = \frac{(x+e^{2x})'(\sqrt{x})-(x+e^{2x})(\sqrt{x})'}{\sqrt{x}^2} = \frac{(1+2e^{2x})\sqrt{x}-(x+e^{2x})/(2\sqrt{x})}{x} = \frac{2x(1+2e^{2x})/(2\sqrt{x})-(x+e^{2x})/(2\sqrt{x})}{x} = \frac{x+e^{2x}(4x-1)}{2-\sqrt{x}}
```

^aMaxima est un logiciel gratuit de calcul formel; vous pouvez le télécharger sous : http://maxima.sourceforge.net/download.html ou l'utiliser en ligne : https://www.rollapp.com/app/maxima

Exercice 4. (dérivée d'une composée)

On note
$$f: x \mapsto 2x + 5$$
, $g: x \mapsto \sqrt{x}$, $h: x \mapsto 1/x$.

Déterminez toutes les composées possibles de deux fonctions parmi f, g, h ainsi que leurs dérivées^b.

$$(f\circ g)(x) = 2\sqrt{x} + 5. \\ (f\circ g)'(x) = (f'\circ g)(x) \times g'(x) = 2 \times 1/(2\sqrt{x}) = 1/\sqrt{x}.$$

$$(g\circ f)(x) = \sqrt{2x+5}. \\ (g\circ f)'(x) = (g'\circ f)(x) \times f'(x) = 1/(2\sqrt{2x+5}) \times 2 = 1/\sqrt{2x+5}.$$

$$(f\circ h)(x) = 2/x + 5. \\ (f\circ h)'(x) = (f'\circ h)(x) \times h'(x) = 2 \times (-1/x^2) = -2/x^2.$$

$$(h\circ f)(x) = 1/(2x+5). \\ (h\circ f)'(x) = (h'\circ f)(x) \times f'(x) = (-1/(2x+5)^2) \times 2 = -2/(2x+5)^2.$$

$$(h\circ g)(x) = 1/\sqrt{x}. \\ (h\circ g)'(x) = (h'\circ g)(x) \times g'(x) = -1/(\sqrt{x})^2 \times 1/(2\sqrt{x}) = -1/(2x\sqrt{x}).$$

$$(g\circ h)(x) = \sqrt{1/x} = 1/\sqrt{x} = h\circ g(x).$$

$$(g\circ h)'(x) = (g'\circ h)(x) \times h'(x) = (1/(2\times\sqrt{1/x})) \times (-1/x^2) = -\sqrt{x}/(2x^2) = -1/(2x\sqrt{x}).$$

Exercice 5. (courbe et tangente, coût marginal, coût moyen)

Produire x tonnes de blé coûte $\gamma(x) = 2 + x + x^2$ unités monétaires.

a) Déterminez et interprétez le taux d'accroissement de γ entre 1 et 3.

$$\tau_{1,3}(\gamma) = (\gamma(3) - \gamma(1))/(3-1) = ((2+3+3^2) - (2+1+1^2))/2 = (14-4)/2 = 5.$$

Le taux d'accroissement de γ entre 1 et 3 vaut 5. C'est la pente de la corde rouge de Fig. 3. Chaque tonne de blé produite entre une tonne et trois tonnes coûte en moyenne 5 unités monétaires.

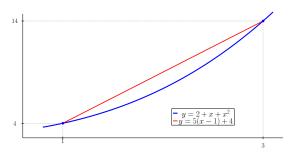


Fig. 3

b) Quel est le taux d'accroissement $\tau_{1;1+h}(\gamma)$ de γ entre 1 et 1+h?

$$\tau_{1;1+h}(\gamma) = (\gamma(1+h) - \gamma(1))/(1+h-1) = ((2+(1+h) + (1+h)^2) - (2+1+1^2))/h = (3h+h^2)/h = 3+h.$$

c) Quelle est la limite de $\tau_{1;1+h}(\gamma)$ quand h tend vers 0 ?

$$\lim_{h \to 0} \tau_{1;1+h}(\gamma) = \lim_{h \to 0} (3+h) = 3.$$

d) Quel est le nombre dérivé de la fonction γ en 1 ?

La limite du taux d'accroissement de γ entre 1 et 1+h est le nombre dérivé de γ en 1. Ainsi, $\gamma'(1)=3$.

- e) Quelle est l'équation de la tangente à la courbe de γ au point d'abscisse 1 ?
 - $\gamma(1)=4, \gamma'(1)=3$. La tangente à la courbe de γ au point d'abscisse 1 a pour équation : y=3(x-1)+4.
- f) Déterminez et interprétez le coût de production marginal en 1.

Le coût de production marginal en 1 est : $\gamma'(1) = 3$: quand on a produit une tonne de blé, produire une tonne supplémentaire coûte approximativement trois unités monétaires.

g) Combien coûte la production d'une tonne supplémentaire de blé quand une tonne a déjà été produite ? $\gamma(2) - \gamma(1) = (2 + 2 + 2^2) - (2 + 1 + 1^2) = 4 : \text{ quand on a produit une tonne de blé, produire une tonne supplémentaire coûte exactement quatre unités monétaires (coût de surproduction). Rq. Le coût marginal est une approximation du coût de surproduction (Fig. 3).$

^ben utilisant la formule de dérivation des fonctions composées

Coût de surproduction d'une tonne suplémentaire quand une tonne a déjà été produite $\begin{cases} & & & -y=2+x+x^2\\ & & -y=3(x-1)+4 \end{cases}$ Coût marginal : approximation du coût de surproduction

Fig. 4: Coût marginal vs. coût de surproduction

- h) Quand on produit deux tonnes, quel est le coût moyen de production d'une tonne de blé? $\gamma(2)/2 = 4$: quand on a produit deux tonnes de blé, chaque tonne coûte en moyenne quatre unités monétaires.
- i) Quelle est la fonction dérivée de γ ? $\gamma'(x) = 1 + 2x.$
- j) Déterminez et interprétez le coût de production marginal en 2. $\gamma'(2) = 5 : \text{ quand on a produit deux tonnes de blé, produire une tonne supplémentaire coûte <u>approximativement</u> cinq unités monétaires.$

Exercice 6. (capitalisation et approximation affine)

- 1. On place un capital K au taux annuel p%; quel montant K(t) détient-on après t années ? La valeur acquise après t années d'un capital K placé au taux annuel p% est : $K(t) = K(1 + p/100)^t$.
- 2. Montrez que $\ln K(t) = \ln K + t \ln(1 + p/100)$. $\ln K(t) = \ln(K(1 + p/100)^t) = \ln K + \ln((1 + p/100)^t) = \ln K + t \ln(1 + p/100).$
- 3. Quelle est l'équation de la tangente à la courbe de $x \mapsto \ln(1+x)$ au point d'abscisse 0 ? En notant $f(x) = \ln(1+x)$: f'(x) = 1/(1+x) ; f'(0) = 1/(1+0) = 1 ; $f(0) = \ln(1+0) = 0$; la tangente à la courbe de f au point d'abscisse 0 a pour équation : y = f'(0)(x-0) + f(0) ; y = x.
- 4. Montrez que $\ln K(t) \approx \ln K + pt/100$.

D'après 3., l'approximation affine de $x \mapsto \ln(1+x)$ au voisinage de 0 est $x \mapsto x$. Ainsi, quand x est proche de 0 : $\ln(1+x) \approx x$. Donc, pour un taux p proche de 0 : $\ln(1+p/100) \approx p/100$ et $\ln K + t \ln(1+p/100) \approx \ln K + t p/100$.

Exercice 7. (dérivées et monotonie)

Quelle est la monotonie des fonctions suivantes?

- a) $f: x \mapsto 2x^3 + 3x^2 12x$ b) $g: x \mapsto x \ln x$ c) $h: x \mapsto xe^x$ d) $r: x \mapsto \ln x/x$
- a) f est dérivable sur \mathbb{R} et pour tout réel x: $f'(x) = 6x^2 + 6x 12 = 6(x^2 + x 2)$. Le discriminant de $x^2 + x 2$ vaut 9, ses racines sont : $(-1 \sqrt{9})/2 = -2$ et $(-1 + \sqrt{9})/2 = 1$. Ainsi : f'(x) = 6(x + 2)(x 1). Le tableau suivant indique le signe de f' et les variations de f.

x	$-\infty$		-2		1		+∞
x + 2		_	0	+		+	
x-1		-		_	0	+	
f'(x)		+	0	_	0	+	
var(f)	-∞ -		→ 20 −		* -7 -		- +∞

b) g est dérivable sur $\mathbb{R}^+\setminus\{0\}$ et pour tout réel x>0 : $g'(x)=(x\ln x)'=(x)'\ln x+x(\ln x)'=1\times\ln x+x\times 1/x=1+\ln x$. g' s'annule en un seul point : 1/e. Le tableau suivant indique le signe de g' et les variations de g.

x	$0 1/e +\infty$
$1 + \ln x$	- 0 +
var(g)	$0 \longrightarrow -1/e \longrightarrow +\infty$

c) h est dérivable sur \mathbb{R} et pour tout réel x: $h'(x) = (xe^x)' = (x)'e^x + x(e^x)' = 1 \times e^x + x \times e^x = (1+x)e^x$. h' s'annule en un seul point : -1. Le tableau suivant indique le signe de h' et les variations de h.

x	$-\infty$		-1		+∞
e^x		+		+	
1 + x		-	0	+	
h'(x)		-	0	+	
$\operatorname{var}(h)$	0 —		-1/e		, +∞

d) r est dérivable sur $\mathbb{R}^+ \setminus \{0\}$ et pour tout réel x > 0: $r'(x) = (\frac{\ln x}{x})' = \frac{x(\ln x)' - (x)' \ln x}{x^2} = \frac{x \times 1/x - 1 \times \ln x}{x^2} = \frac{1 - \ln x}{x^2}$. r' s'annule en un seul point : e. Le tableau suivant indique le signe de r' et les variations de r.

x	0		e		+∞
$1 - \ln x$		+	0	-	
x^2		+		+	
r'(x)		+	0	_	
var(r)	$-\infty$		1/e -		→ ₀

Exercice 8. (fonctions quadratiques)

La fonction f est définie sur \mathbb{R} par : $f(x) = 2x^2 - 8x + 6$.

1. En quels points la fonction f s'annule-t-elle ?

 $f(x) = 2(x^2 - 4x + 3)$. Le discriminant de $x^2 - 4x + 3$ vaut 4 ; ses racines : $(-4 - \sqrt{4})/2 = -3$ et $(-4 + \sqrt{4})/2 = -1$ sont aussi les zéros de f.

2. Exprimez f(x) comme un produit de polynômes de degré un en x.

f est un polynôme de degré deux en x dont les racines sont : -1 et -3; donc : f(x) = 2(x+1)(x+3).

3. Etudiez les variations de f.

f est dérivable sur \mathbb{R} et pour tout réel x, f'(x) = 4x - 8. Sur l'intervalle $]-\infty;2]$, f' est négative et f est décroissante ; sur l'intervalle $[2;+\infty[$, f' est positive et f est croissante. Le tableau suivant donne le signe de f' et les variations de f.

x	$-\infty$		2		+∞
f'		-	0	+	
var(f)	+∞ _		-2		. +∞

4. Quel est l'ensemble image de f?

f est continue sur \mathbb{R} ; elle prend donc toutes le valeurs comprises entre -2 et $+\infty$.

5. f atteint-t-elle un minimum? un maximum?

f prend la valeur -2 mais aucune valeur strictement inférieure à -2. Ainsi, -2 est le minimum de f sur $\mathbb R$.

Rq. Chacune des questions de cet exercice peut être traitée en invoquant quelques propriétés générales des fonctions polynômiales du second degré. En effet, si $f(x) = ax^2 + bx + c$ $(a \in \mathbb{R} \setminus \{0\}, b, c \in \mathbb{R})$, alors :

- (i) f n'admet aucune racine réelle si son discriminant $\Delta = b^2 4ac$ est strictement négatif ; f admet une racine unique : -b/(2a) si $\Delta = 0$ et deux racines distinctes : $(-b \pm \sqrt{\Delta})/(2a)$ si $\Delta > 0$.
 - (ii) f se factorise en : $f(x) = a(x (-b \sqrt{\Delta})/(2a))(x (-b + \sqrt{\Delta})/(2a))$ si $\Delta > 0$ et $f(x) = a(x + b/(2a))^2$ si $\Delta = 0$.
- (iii) Si a > 0: f est décroissante entre $-\infty$ et -b/(2a), croissante entre -b/(2a) et $+\infty$, f atteint un minimum en -b/(2a) et son ensemble image est $[f(-b/(2a)); +\infty[$. Si a < 0: f est croissante entre $-\infty$ et -b/(2a), décroissante entre -b/(2a) et $+\infty$, f atteint un maximum en -b/(2a) et son ensemble image est $]-\infty$; f(-b/(2a))].

Exercice 9. (dérivées et monotonie)

A l'instant t, le prix du baril de brut est : p=t unités monétaires et le volume de brut détenu par Sam est : $q=e^{-t}$ barils.

- 1. Quelle est la valeur du stock de Sam à l'instant t?

 La valeur du stock à l'instant t est : $v(t) = p \times q = te^{-t}$.
- 2. Comment la valeur du stock de Sam varie-t-elle avec le temps?

 $v: t \mapsto te^{-t}$ est dérivable sur \mathbb{R} et pour tout réel $t: v'(t) = (te^{-t})' = (t)'e^{-t} + t(e^{-t})' = 1 \times e^{-t} + t \times (-1) \times e^{-t} = e^{-t}(1-t)$. v' possède un seul point critique : 1 ; le tableau suivant indique le signe de v' et les variations de v sur \mathbb{R} .

t	$-\infty$		1		+∞
e^{-t}	-	+		+	
1-t	-	+	0	-	
v'(t)	-	+	0	_	
$\operatorname{var}(v)$	-∞	<u>_</u>	1/e		→ 0

Comme t est une durée, l'étude des variations de v peut être restreinte à \mathbb{R}^+ :

t	0		1		+∞
e^{-t}		+		+	
1-t		+	0	_	
v'(t)		+	0	_	
$\operatorname{var}(v)$	0 -		→ 1/e -		→ 0

La valeur du stock de Sam croît continument entre les instants 0 et 1, avant de décroître. Ainsi, elle est maximale à l'instant 1 où elle vaut 1/e.

Le prix du baril à l'instant t dans une unité monétaire alternative est $p=t^2$.

3. Etudiez, dans cette nouvelle unité monétaire, les variations de la valeur du stock avec le temps.

 $v: t \mapsto t^2 e^{-t}$ est dérivable sur \mathbb{R} et pour tout réel $t: v'(t) = (t^2 e^{-t})' = (t^2)' e^{-t} + t^2 (e^{-t})' = 2t \times e^{-t} + t^2 \times (-1) \times e^{-t} = e^{-t} (2t - t^2) = t(2 - t)e^{-t}$. v possède deux points critiques : 0 et 2 ; le tableau suivant indique le signe de v' et les variations de v sur \mathbb{R} .

t	$-\infty$		0		2	+	∞
e^{-t}		+		+		+	
t		_	0	+		+	
2-t		+	·	+	0	_	
v'(t)		_	0	+	0	_	
$\operatorname{var}(v)$	+∞ _		0 —		$4/e^{2}$ _	→ ()

La restriction de l'étude à \mathbb{R}^+ montre que la valeur du stock de Sam croît entre les instants 0 et 2 avant de décroître. La valeur du stock est maximale à l'instant 2 où elle vaut $4/e^2$.

Exercice 10. (élasticités)

- 1. Déterminez et interprétez l'élasticité en 1 de chacune des fonctions suivantes.
 - a) $x \mapsto 3x + 1$ b) $x \mapsto e^{2x}$
- c) $x \mapsto 3x^{-3}$ d) $x \mapsto \sqrt{x}$
- e) $x \mapsto 1/(x\sqrt{x})$
- o L'élasticité de $f: x \mapsto 3x+1$ en 1 est : $xf'(x)/f(x)|_{x=1} = 3x/(3x+1)|_{x=1} = 3/4 = 0,75$: quand la variable x augmente de 1% à partir de la valeur 1, la valeur de la fonction f augmente de 0,75% environ.
- o L'élasticité de $g: x \mapsto e^{2x}$ en 1 est : $xg'(x)/g(x)|_{x=1} = 2xe^{2x}/e^{2x}|_{x=1} = 2$: quand la variable x augmente de 1% à partir de la valeur 1, la valeur de la fonction g augmente de 2% environ.
- o L'élasticité de $h: x \mapsto 3x^{-3}$ en 1 est : $xh'(x)/h(x)|_{x=1} = x \times (-9)x^{-4}/(3x^{-3})|_{x=1} = -3$: quand la variable x augmente de 1% à partir de la valeur 1, la valeur de la fonction h diminue de 3% environ.
- o L'élasticité de $u: x \mapsto \sqrt{x}$ en 1 est : $xu'(x)/u(x)|_{x=1} = x \times (1/2)x^{-1/2}/x^{1/2}\Big|_{x=1} = 0, 5$: quand la variable x augmente de 1% à partir de la valeur 1, la valeur de la fonction u augmente de 0,5% environ.
- o L'élasticité de $v: x \mapsto 1/(x\sqrt{x})$ en 1 est : $xu'(x)/u(x)|_{x=1} = x \times (-3/2)x^{-5/2}/x^{-3/2}\Big|_{x=1} = -1, 5$: quand la variable x augmente de 1% à partir de la valeur 1, la valeur de la fonction v diminue de 1, 5% environ.
- 2. A l'instant t, le prix du titre SA.Inc est $p(t) = 2e^{0.1t}$ et la quantité de titre SA.Inc détenue par M. Li est q(t) = t.
 - (a) Quelles est la valeur v du portefeuille de M. Li à l'instant t? La valeur du portefeuille de M. Li à l'instant t est $v(t) = p(t) \times q(t) = 2te^{0.1t}$.
 - (b) Déterminez l'élasticité de v par rapport à t. La dérivée de v en t est $v'(t) = e^{0.1t}(0, 1 \times 2t + 2) = e^{0.1t}(0, 2t + 2)$. L'élasticité de v en t est : $\text{El}_t \ v(t) = e^{0.1t} (0.2t^2 + 2t)/(2te^{0.1t}) = 0.1t + 1.$
 - (c) Vérifiez : $\text{El}_t \ v(t) = \text{El}_t \ p(t) + \text{El}_t \ q(t)$ et interprétez cette égalité. $\operatorname{El}_t p(t) = tp'(t)/p(t) = 0, 2te^{0.1t}/(2e^{0.1t}) = 0, 1t.$ $El_t \ q(t) = tq'(t)/q(t) = t/t = 1.$ Ainsi : $\operatorname{El}_t p(t) + \operatorname{El}_t q(t) = \operatorname{El}_t v(t)$.